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SUMMARY

By a generalization oj the Joukouwki method,

NING PRESSURE DISTRIBUTION IN

:ONAL FLOW

T. JONESand Dorm COHEN

a pro-
cedure ti- de~eloped -for ejecting localized modijicatiw-s oj
airjoi[ shapes and jor determining graphically the rwuliant
chainyx in the pressure Mm-bution. The application qf
the procedure to the determination oj the pressure distri-
bution occr czirjoils oj original de8ign i8 demonstrated.
Formulas -for tb lijt, the naom.eni, and the aerodynamic
center are also giwn.

INTRODUCTION

1t is possible, by a simplr gconwtric comtruction,
to modify any given streamline shape in such n way
that the effect of the modification on the pressure clis-
tribution, t.ho lift, and the moment can be readily
determined. TIM construction is essentially that used
in deriving the familiar Jouko wski airfoils from a circle
(reference 1) although it may be Rpplied to an airfoil
shape to introduce modifhmtions of the outline. The
method is based on the concept of complex numbers
but its application requires no familiarity with them.

By two or more successive applications of the con-
struction to n circle, it is possible to derive shape of
slwh (livelsity as to permit the npproxinmtion of ncarbj
~~ny oirfoil of current design. For the airfoil derived
in this wuy the prcwlwe distribution can be flctermined
l~xtictly, so that the only error likely to occur is in th~’
r~!production of the exuct airfoil shape. Auy inticc.urocy
in this approximation is immediately apparent and can
be mudc m small as is considered desirable.

MODIFICATION OF AN AIRFOIL

The method consists entirely in applications of a
single construction; desired effects are obtained by the
proper choice of a parameter k and of the Iocat,ion of
the axes with respect to the figure to bc transformed,
This bmic construction applied to an airfoil surface is
demonstrated in figure 1. In ordor to find the point

& on the modified airfoil to correspond to a point z
on the original airfoil, the vector Oz is drawn from the

brigin nnd the, vector O: is died to iL The. vectcm

O:, which will be termed the “reciprocal” vector, is con-

structed w’ith its length equal to It* times the reciprocal
of the length of Oz and at an angle —@.tith the z-atis,
where @ is the angle made with this ads by Oz. A

point of the modified airfoil, then, is located by the
resultant of the vector Oz and its reciprocal vector.

The construction by which a figure is modified ap-
plies equally well to aI1 its streamlines, altering them
to conform “to the distortion. The change in spacing
of the streandines near the boundary of the figure w.iU
show directly the effect of the transformation on the
velocity in that region because the veIocity varies
inversely with the spacing. The factor by which the
elements of length near a point z are changed may be
shown to be the ratio of the length of the diagonal from

1=

FIGLIRE1.—Conatruct1ou to dctmmhc a pint on ULOMOWed *UIOU.

P/z to z (the vector z–P/z) to the vector Oz. Then the
ratio of the velocity at a point z+k2/z to the velocity
at the corresponding point z of the original figure is
the inverse of this factor.

The problem of determining the pressure clistribu-
tion is reduced by Bernoulli’s relation F’=F’O-PT”2/2
to that of finding the distribution of the velocity. If
the velocity distribution over t.ha original figure is
knowq the velocity distribution over the modithd

figure may then be found by upplyiug the ratio &

12– z
at cuch point used in the construction. The vectors
2 and z—kafz have already been used in transforming
these points and are therefore directly measurable.

Strictly speaking, the method as outlined is applica-
ble only to potential flows. It is reasonable to suppose,
however, that the actual velocity distribution over the
modified airfoil may be obtained with good accuracy
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from a distribution experimentally determined for the
original airfoil, provided that: (1) the experimental and
the theoretical distributions do not differ too greatly
and (2) the modification itself does not introduce too
great a change in the distribution.

The requirements of each problem will suggest the
proper choice of the txses and of k. A few general
observations may be helpful in this comection. It is
evident that the origin must be in the neighborhood of

~;
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FIGURB2.—The eflect of varyimg the parameters of the construction.

the section to be modified since the point nearest the
origin is shifted the greatest distance. T~e direction
in which a point is shifted depends on the intiat’ion of
its vector..t.o the axes, and the shift may have a relatively
small component normal to the airfoil boundary. If
one atis is roughly pnrallel to the section of the surface
to be modified, the point of greatest deviation will
usually be very near the. intersection of the surface
with the other nxis.. It will therefore be useful to note
that the displacement of a point on either axis is
lc2/d,where d is the distance of the.origin fr.orn the point.
Points on or near the x-axb are shifted outward from
the origin; points near the. g-axis am moved inward.
The transformations of figure 2 show the nature of the
modi.6cations to be obtained by various choicei of the
axes and of k. Shar@ modifications occur when the
iirfoiI intersects either axis at a distance from the
origin only slightly greater than k.

It is expected that the method as outlined will be
useful in ascertaining the efTect on the velocity distri-
bution of a localized modification of ~ airfoil. It is
possible, however, to approximate a more extensive
modification to any desired degree of. accuracy by
3uccestive applications of the same transfornmtion, the
velocity being calculated at each stage by tho rule
already given.

APPROXIMATION OF A GIVEN AIRFOIL

The foregoing discussion is concerned with tile. _ .
problem of effecting small modifications of existent air-
foils @ which t$e velocity distribution h known. IL
ii sometimes required to predict the theoretical charac-
teristi~ of an airfoil not derived in this way. In such ~
a case; it is custommy to use the known How mound a
circle as a starting point. If the transformation
discussed here is appliecl to a circle, the result is an
oval shape with circular-arc camber, as demonstraLwl
by J~diodii. (See reference I.) It should be possible
to proceed to moclify this figure (or its spocinl form, a
Jouk&ki airfoil) as was done in the preceding scctio~
to ar-experimentally known airfoil. In general, how-
ever, it would” requiro many steps Lo ‘reproduce an
arbitrary airfoil in this way because nmclifications of
the shnpe already approaching an airfoil would, of
necwsity, be small and localized. On the other htindj
if the procedure were reversed, it would be found thnL “”
any airfoil may be derived by a single step from a
figurii closely approximating a circle, a figure which
wiIl ~ereinaf ter be called the “distorted circ~e” of Lho
kirfofli” The distorted circle may then be considered
the result of modifying a circle, a result obtnined in
the sm.ne way as were the slightly modified airfoils of
the preceding section.

Fo~ the fist step in this process, the dctcrmindion
of thi distorted circle corresponding to the clcsircd

airfoil, reference could be made to ‘1’heodo~eu nnd
Garrick (reference. 2) or von Ktirn~&n- nnd Burgws
(reference 3), who give exact fornnhs for the clistortcd
circle in tehns of the airfoil coordinates. A gmphimd
method based. on tho simpler trnnsformution thnt is
being used in this paper mnkes it possible, lWWOVW,to
obta@ the distorted chle merely by trial.

Tk entire proccdurc is illustrated step by step in
figure=. In order to achieve a considerable s@plificn-
tion of thr construction, the tiirfoil is considered in this
figure and in the following discussion. to have been
clravin. through the midpoints rather t,hon thr~@l th(’
terminals of the. vectors z+ k*/z, so that they appear
here as if to half scale.

The axes and the parameter k for the first stop ara
found from the nirfoil dimensions ac~fiing to the..
relations given in figure 3(a). The z-axis is mnde to
pass through the. leading and the trailing edgzs to
reduce to a minimum the distortion thnt will later hav o ~
to be reproduced.

The nxes and k hnving been chosen, the intersections
of the distorted circle with the axe% -&j XT? YU, and
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(b) J..aation of the fnterseetioua of the dfstorted efrcfe with the area.

(d) Construction of the dfstorted clmle of the airfoii.
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(f) Reeonstruotion of thedrfofl fro’mthe efrcle, showing the lLO.SSne@d in cornput-

(e) Approximationof the distorted circle by a small modlktfon of a circle. ‘” , jng the reldty dfstrfbutkm.

Fmum?, 3.-6teps in the approxfmat!onof a givenairfoilby the transformationof a cfrole.
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1“7,,arc easily calculated (fig. 3 (t.))). The construction
thm proceeds as follows:

In order to serve as a first approximation of the
distorted .circ.le, a circle is drawn to fit the four inter-
scc.tions with the axw as closely as possible, It should
be remembered that, because this step is a first approxi-
mation, great accuracy ia not a consideration. When
the vectors z follow this circle, the vectors k2/z, con-
structed as previously described, are found to terminate
in a smaller circle, which ia termed for convenience thd
“reciprocal” circle, This reciprocal circle may be easily
located from its intemections with the axes (fig. 3 (c)).

& are then drawn from the originVectors 02 and ~

to the circle and to the reciprocal circle at equal angles
below and above the x-axis (fig. 3(d)), The midpoint
~ 1 of t,he di~onal Z—F/Z connecting the ends of these

?ectcm will not, in general, fall exactly on the airfoil.
A point of the distorted circle z~ is located by adjusting
with dividera the length of Ozb fdong 02 so that the
diagonal to its reciprocal is bisectei .by the airfoil,
The point of the airfoil ZCat which this bisection occurs
will actually be indistinguishable from the intersection
of the first diagonal with the airfoil; this fact is useful
in making the correction. Because the corrections to

P
the vectors Oz and 07 are in approximately the same

ratio as the ~ectom, the decrease in P/z that corres-
ponds to an increase in the length of Oz may be esti-
mated and the reciprocal relation be maintained by
eye. Any des.jred degree of accuracy nmy be obtained
by checking numerically the lengths of the vectors.

The distorted circlo obtainod in this way must now
bo appro.ximntccl by rtpplying rt transformation of the
form z+k2/z to the circle most nwwly approximating it.
For this purpose the circle already drawn for the pro-
reding st.cp will usually h sutisf uctqy, rdthough it
may havo to bo shiftml slightly to obtain a more con-
venient distribution of the c[ist.ortion. Depressions
should occur m nemly as possible on opposito sides of
the circle, with distoidcd portions bctwoen them.
(See fig. 3(0).) The z-axis should then be passed
through tho distended portions and tho y-axis, through
the depressions. Some adjustment will be neodcd to
satisfy the condition that the segments of the mwe cut
off by the circle and the corresponding distortions be
approximately in inverse proportion, that is, that their
procluct at each in tensoction be constant. Tho pmam-
~ter k for the trat~formation is then tho squaro roob
of this product,

Carrying out the transformation of the circle aL
this point servos at onc.o LQcheck the estimated param-
eters or to suggest an adjus@m& and @ provide the
construction lines thuL wiII be needed to determine tho
velocity distribution. Similarly, the distorted circle
thus obtained from tho circle should be reduced to the
desired tiOil.

In figure 3(f) the complete double transformation
tmd the hms necessary for the computation of the veloc-

ity distribution aro shown applied to a point of tho
circle of figure 3(e).

Occasionally an airfoil will givo riso to a distorted
circle that wmnot be obtained by a single modification
of a circle. In such a case an additional trmsformti-
tion may be applied either to achieve the desired
distortion of the circle or to modify locally an airfoil
that can be derived by two transformations.

VELOCITY DISTRIBUTION OVER AN A~RFOIL DERIVED
FROM A CIRCLE

It is apparent that a large variety of .uaeful airfoil
shapes can bo obtained by two or mom sucxxssivc appli-
cations to a circle of the ~tmnsformation ‘z+k2/z.
(Two typical examples are shown in fig. 4.) The first
transformation primarily determines the genoral outline
of tho airfoil. The second transformation reducce the
figure b the dimensions of an airfoil and determines
the nose radius, the thicku ess, and the camber. It
may be of interest to note that in the first transforma-
tion k is small relative to the radius of the circle; in
the second transformation the ratio of k to tho radius
of tho circle is only slightly less than 1.

The method of finding the velocity at a point. on tin
a.irfoiI derived in this manner is deduced from tho
following considerations:

The velocity fit a point z on the circle is given by
the fornda

V*=2V0 sin0+2$

where r is tho .rtidius of the circle, T’. is tho wind vcloc-
ity, ancl C?is the nnglc that the radius to the point z
makes witl~ the direction of t.hc air stream. ‘l%c cirru-
Mion I’ is dct.crmined by the Kutta con(~tion. Then

Vz=2T70(sin d–sin 130)

where do equll.ls the tingle bctwcon the alr strew uncl
the rrbdius to z~X., tllm point of the circle that. ham-
forms to the trailing edge of the airfoil. This cxprm-
sion for I’Z kinds itself rmdily to graphical waluaticm
M a, part of tlhc construction; the vclocit,y factor
(sin d–sin O.) is proportioned to the ordinat,c of Lhc
circle measurccl from n line druwu through .z~.~. und
parallel to the wind velocity Vo,

The velocity at the corresponding point of the trans-
formed figure has been shown in a precmling scc.tion to

‘z\, V.. (IIo“strc.tehing fnctorbe . 7}~ W,illl,*ve

n
z—.—

4$ 2 I
to bo applied again to the velocities over the distortud
c.irclc to transform the flow to that over thr uirfoil.
A simple procedure is to plot the stret thing factor nlonc
for the first transformation, as a function of the angultir
position of the transformed point, with the length

H
Izl and z–~ measured from the construction. The

. .
stretching factor for the second transformation could
then bg applied at convenient points to vahws of the
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FIGURE4.—AMoIIs dertved by two applications of kansforr.oatfon to dreie. Afrfofis me shown half eeale with respect to circles.

stretching fact or for tb e first transf ormat ion read from
the plot. The resultant stretching ftictor obtained in
this way can be directly applied to the velocity nt
points of the circle to give the velocity distribution
over the airfoil at any angle of attack.

Figure 5 shows a sample pressure distribution ovel
an airfoil (the NAC.k 4412 airfoil) approximate ed by
two transformations of a circle. Comparison is made
with the distribution derived by the theory of reference
2 and with experimental results taken from reference 4.
The theoretical distributions were computed at an
ungle of uttacli of 6.4°, which corresponds to a geom&-
ric angle of attack of 8.5° for the finite-spat) airfoil of
refwcnce 4.

~ONCLUSION

The method of this pnper lms bwn found useful it]
determining the effect of srrmll mollifications of airfoil
shapes on the pressure distribution. Yt is apparent
t.hnt u family of related shapes can be derivccl in this
way with great er si.mplicit y than by st andmd methods
because the effect of the modification alone can be
crdc ulat ed for each shape. It is also possible to foresee
the manner in which n. shape must be modified to
produce a desired chmge in the pressure clistribution.
The method is, in fact, reversible and by it tin airfoiI
may be designed to have a predcterminccl pressure

FIG rEE 5.—TbwmctIcal and expcrfmrmtsl prmsurc distributions over X-ACA 4412
Strfoli. a.= G.4”.

distribution, provickl that a sonwwhtbt similar u.irfoil
is already known. The moclificcl pressure clistributions
obtained in this way have closely checl-wd with ex-
periment.

LANGLEY hfEMORL4L AERONAUTICAL LABORATORY,
IYATIONAL ADVISORY COMMITTEE FOR ~ERONAUTICS,

LANGLEY FIELD, JrA., l?orember 12, 1940.



APPENDIX

FORMIJLA8 FOR LIFT AND MOMENT

In the case of an airfoil &rived from n circle., the
method of derimt ion, interpreted in t crms of complex
rmmbers, nmkea it possible to gi~-e concise formulas for
the lift nnd the moment in terms of the prwametem
used in tho construction and to locate by simple gco-
met,ric methods the theoretical aerodynamic center.
The general tkory for n transformation. of the form

Z.= Z+:+$+. . . (1)

htis been developed by vou Mises (reference 5, ch. VII).
In order to apply the formulas of von Mises, it is neces-
sary to esprcss the resultant of two successive trans-
formations in R series of the foregoing form.

Let z~= 2+k12/2 express the filst transformation, z
being a point on the circle or one of its streamlines
n.nd Zb, the corresponding point associated with the
distorted circle. The axes for the second transformat-
ion are described by the complex parnnwter Zl, which
locates the origin, nnd ~, the angle between the two sets
of axes.

Then, if primes denoto the vectors drawn to the new
origin,

:Bt= (zb—~&?-W (2)
Substitute

Then

“’=(’+%+’-” (3)

which is the point on the distorted circle locat cd with
respect to the axes for the second transformation.
Apply the second transformation to zi’; then

(4)

gives the corresponc]ing point associated with the air-
foiI. Substitute for Za’ from equation (3). Equrition
(4) then becomes

‘:=(2+:-’l)e-’’+~g::k,2‘5)
In order to restore the wind velocity Vo to its oi’iginal

magnitude and direction, it is necessary to return to
the original axes.
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2=’ = (2=—21) e-@ (6)

and the inverse transformation is

TMs expression for the complete transformation can be
expanded, by carrying out the division of the l~st twin,
into the series

(9)

which is in the form of equation (1), wlwrc

The formulas for the lift and the moment as given by
Glaue:t (reference 5,pp. 84 and 85) mny now be applied.
The ~culntion, and consequently the lift, is unchm~gcd
by the transfornmtiou. Thus the lift depcncls only on
the radius of the original circle.

L= PVJ’=87W5’: sin t?~ (11)

or 4#@’/ sin 80 for the half-scale nirfoil, TIc due .

of .Ll& the moment about O (fig. 6), is given by the
hnag~nary part of the expression (reference 5, p. 84)

where the quantities not already defined are as Wined
by the figure. Substitution for a., from equation (10)
gives.

For expression (12), or

ilIo=2rpVj[k? sin 2cc+k,2 sin 2 (a+~)]
–mpvor cos (a–a) (14)

3inc0
.-

r=4Trl”0 sin (a–q) (15)

&fo=2mpV$[k? Siil2a+k,2 Sin 2(&+/9)
–2rm cos (a–~) sin (a–aJ] (16)
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In general, the moment about any point z (see fig. 6)
is given by

Mz=2ifpY$[k? sin 2a+k? sh 2(a+19)

+27d Cos (a–+) sin (a–aO)] (17)

or
M.

~,=[k?+k~ Cos 2p+?Yf Cos (f#+@)]fi z~%pl o
+[lw sin 2&?d sin (r#+ceo)] Cos 2a

+rd sin (&ao) (18)

The location of the aerod~amic center (or focus) is
determined by the condition that the moment about
that point be independent of the angle of attack. In
order to satisfy this condition, the coefficimts of
cos 2a and of sin 2a in equation (18) must vanish
simultaneously.
Thus ●

1 kl*+k: Cos P) –;( 2 ––d COS (@+cq) (19)

1~+’sin 2p=d Sin (@+aO) (20)

(++~o)=tan-’ ‘kl fi 2/3k,~+lc,a C!os 2/9
1 (21)

d2=;(k14+2k,’k,’ COS 2/9+k$)
I

Ilquations (2 I.) ar~ found t.o hn-re a simple geometric
representation. If k?/r and ii22/r me two sicles of a
trianglo and (180°– 26) is the angle between them, then
d is the length of the third side nnd (@+ao) is the
supplement of the angle opposite k?/r. This triangle
may be used to locate the aerodynamic center directly
on the construction, as shown in figure 7. As in the
precediug illustrations, this airfoil has been draw-n to
half scale with respect to the circle and the distance d
has therefore been bisected. The moment about the
aerodynamic center

P.
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FIGCZE i.—ConWructiontoSndtherwrwlynsmiccenter.

is obt.uined dhect.ly from equution (1S). The moment
for the Mf-scale uirfoil is one-quarter of this value.
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